Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters

Language
Document Type
Year range
1.
Case Studies in Chemical and Environmental Engineering ; 2023.
Article in English | EuropePMC | ID: covidwho-2281025

ABSTRACT

Life cycle assessment and machine learning were combined to find the best option for Tehran's waste management for future pandemics. The ReCipe results showed the waste's destructive effects after COVID-19 were greater than before due to waste composition changes. Plastic waste has changed from 7.5 to 11%. Environmental burdens of scenarios were Sc-1 (increase composting to 50%) > Sc-3 > Sc-4 > Sc-b2 > Sc-5 > Sc-2 (increase recycling from 9 to 20%). The artificial neural network and gradient-boosted regression tree could predict environmental impacts with high R2. Based on the results, the environmental burdens of solid waste after COVID-19 should be investigated. Graphical abstract Image 1

2.
J Clean Prod ; 313: 127880, 2021 Sep 01.
Article in English | MEDLINE | ID: covidwho-1263313

ABSTRACT

On January 30, 2020, the World Health Organization identified SARS-CoV-2 as a public health emergency of global concern. Accordingly, the demand for personal protective equipment (PPE), including medical face masks, has sharply risen compared with 2019. The new situation has led to a sharp increase in energy demand and the environmental impacts associated with these product systems. Hence, the pandemic's effects on the environmental consequences of various PPE types, such as medical face masks, should be assessed. In light of that, the current study aimed to identify the environmental hot-spots of medical face mask production and consumption by using life cycle assessment (LCA) and tried to provide solutions to mitigate the adverse impacts. Based on the results obtained, in 2020, medical face masks production using fossil-based plastics causes the loss of 2.03 × 103 disability-adjusted life years (DALYs); 1.63 × 108 PDF*m2*yr damage to ecosystem quality; the climate-damaging release of 2.13 × 109 kg CO2eq; and 5.65 × 1010 MJ damage to resources. Besides, annual medical face mask production results in 5.88 × 104 TJ demand for exergy. On the other hand, if used makes are not appropriately handled, they can lead to 4.99 × 105 Pt/yr additional damage to the environment in 2020 as determined by the EDIP 2003. Replacement of fossil-based plastics with bio-based plastics, at rates ranging from 10 to 100%, could mitigate the product's total yearly environmental damage by 4-43%, respectively. Our study calls attention to the environmental sustainability of PPE used to prevent virus transmission in the current and future pandemics.

SELECTION OF CITATIONS
SEARCH DETAIL